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The main properties of a kinetic wave equation in isothermal plasma T, cz T, are described. 
A fast method is suggested for numerical solution of kinetic equations for plasma waves. The 
method error is estimated. Results of solution of the problem on plasma heating with a 
relativistic electron beam are presented as an illustration of the method. 

Plasma turbulence, i.e., the state of plasma characterized by a high level of 
variations in density and in electric and magnetic fields, has been actively 
investigated in the last few years. This is primarily because in the majority of cases of 
plasma heating, e.g., with the help of relativistic electron beam or laser pulse, the 
energy transforms first into collective wave motions. The characteristics of heating, 
such as relaxation length of the beam, energy flows into plasma, etc., are defined, 
thus, by nonlinear interaction of oscillations. The study of this range of questions 
began in 1961-1963, when similarly to kinetic effects in solid state, an description of 
the weak plasma turbulence according to the kinetic equations for waves [ 1,2], was 
formulated. The subsequent investigations showed, however, that plasma turbulence 
behavior differs sharply from the quasi-particle kinetics in solid bodies. In the 
majority of cases the weak turbulence spectra have proved to be unsteady, concen- 
trated in the k-space on the surfaces, lines or even series of points [3-81. These 
important results have been obtained because of the wide use of numerical 
experiments. This paper presents the technique for numerical solution of the kinetic 
equation for Langmuir waves, which has proved to be effective when the temperatures 
of electrons and ions in plasma are comparable: T, = Ti. This case can be frequently 
met in practice. 

In Section 1 some common properties of the kinetic equation for Langmuir waves 
are examined. In particular, it is shown that the equation is a Hamiltonian one, 
conserving phase volume, even in the presence of the source and wave attenuation. 
This fact defines, to a great extent, the dynamics of Langmuir turbulence. Section 2 
presents the method for quick solution of a kinetic equation, based on approximate 
factorization of the kernel of integral equation. The error of such a transformation is 
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evaluated; the error of solution is shown to be proportional to the kernel variation 
and can be rather small. Section 3 illustrates the results of solving the problem on the 
wave spectra for the plasma heated by a relativistic electron beam. 

1. THE KINETIC WAVE EQUATION AND ITS MAIN PROPERTIES 

The kinetic equation describing evolution of the spectrum of Langmuir turbulence 
due to induced ion scattering has the form [2,4,9] 

$Ek [Y*+ITkk.Ek.dk’] +fk, 

Tkk, = -Tkrk = - - Up (kk’)2 Im GL-k,,wk-ok,, 
2nTe kZk12 

G,, = LKn 
l-L,,; 

L,, = 2 I;;[;’ dv. 

(1.1) 

Here ek is the density of energy of plasma oscillations within the range of the wave 
vectors k and k + dk, f( v is the ion velocity distribution, and fk is the source of ) 
thermal noise. The term ykek corresponds to linear attenuation and excitation of 
oscillations, wk is the Langmuir wave dispersion law, and wP is plasma frequency. 
Equations (1.1) describe nonlinear energy pumping in the k-space from the area of 
wave excitation to the area of small wave vectors, where it dissipates. Equations of 
the (1.1) type are used in various fields of physics, for example, in the study of 
scattering of superthermal quasar radiation [lo] or Mandelstam-Brillouin multiple 
scattering. 

I. 1. Hamiltonian Nature and the Saturation Time Stationary Solutions 

Let us show at first that Eq. (1.1) is (if thermal noise is neglected) a Hamiltonian 
one which conserves the phase volume and other integral invariants. By definition 
ck > 0. Introduce now a new variable, Z, = In .Q. Equation (1.1) can be rewritten as 

I R 
3Z,! 

kk’ at dk’ + [fk - ezk] = 0, 

(1.2) 
fk= R,,,y,r&‘, 

I 

where R,,, is a kernel of the operator which is inverse to an operator with the kernel 
T kk,. It is obvious that R,,, = -R,,,. 
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It is easily seen that (1.2) can be obtained through varying the functional 

S=~iR,,.Z,~dkdk’dt+IHdt, 

H = ( [fkZk + ezk] dk, 

being an action for (1.2). Let us rewrite (1.2) in the form 

or 

azk -= 
at 

T 6H dk’ 
kkTBZk’ 

(1.3) 

(1.4) 

From (1.4) it follows that aH/at = 0 due to the asymmetry T,,,; i.e., H = 
s (ek + fk In ck) dk is th e integral of motion for (1.4), or, equivalently, for (1.1). In the 
absence of damping and instabilities yk = 0, H transforms into a well-known integral 
of the total number of Langmuir waves I. The possibility of writing (1.1) in the form 
of (1.4) means that (1.1) is a Hamiltonian equation. From this it follows that 
Eq. (1.1) cannot have asymptotically stable stationary solutions with the finite 
saturation time unless fk vanishes. Relaxation to the stationary state (saturation) only 
occurs if there is a source of thermal noise fk, disturbing th Hamiltonian nature of 
(1.1) and giving it the character of a kinetic equation. Let us clarify dependence of 
the relaxation time upon noise level [7]. 

Let E: be a stationary solution to (1.1): 

+fk=O' 

Let us assume that ek(t) = E: + Bck(t) and 

8Ek<Ek. 

By linearization of (1.1) we obtain, owing to antisymmetry Tkk8, the relation 

which provides evaluation of the relaxation time 

(l-5) 

(l-6) 
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1.2. Stationary Solutions 

With the neglect of small noise terms, the stationary spectra si satisfy the equation 

(1.7) 

Besides, we can demand that the stationary state be stable in the areas of the k- 
space, where E: = 0. This gives the relations 

Yk = rk”‘, Ef # 0, (1.8a) 

Yk < rk”l, &Ok = 0, (1.8b) 

I-;’ = - 
I 

Tkk& dk’. (1.8~) 

Equations (1.8) define the stationary solution and the area in the k-space, where 
E; # 0 [4, 111. 

Conditions (1.8) have simple geometrical sense. Let us consider them with a fixed 
module of the wave vector. Then the value rt’ and yk are the function of solid angle 
and relation (1.8) means that the surface yk is inside the surface rt’. At the points 
where touching or “adhesion” of the surfaces occur, ei is nonzero. Equation (1.8a) is 
a Fredholm equation of the first kind. Its solution is defined by the structure yk and 
the kernel Tkk,, and there is a great variety of them; some examples of stationary 
distributions E: are given in Section 3. 

Let us emphasize an important fact. It follows from (1.8) that ri’ breaks at those 
points where slj is near zero. Since the kernel Tkkc is analytical, the breaks, as one 
would think, are the result of the irregularity ek. ’ But with E: near zero we must use 
exact Eq. (1.5). The inclusion of the thermal noise results in a peculiar regularization 
of (1.1) and smoothing of the stationary solutions ~11. This is of particular importance 
when the characteristic size yk is much less than the kernel “width” Tkkc, because in 
this case the stationary solution is a set of equidistant sharp peaks [5, 71. 

2. FAST METHOD FOR NUMERICAL SOLUTION OF A 
KINETIC WAVE EQUATION 

The standard method of numerical solution (1.1) consists in the use of a stable 
difference scheme over time, e.g., the Crank-Nicholson scheme, and replacement of 
integration by summation over a discrete set of points. But the computer time 
consumption is excessive even in the plane or axial symmetrical case: (N, x NJ* 
arithmetic operations (N, and N2 are the number of points in the corresponding 
dimensions) must be performed at each time step. 

The suggested method uses replacement of the kernel of integral equation (1.1) by 
a similar degenerated one. In so doing, as we shall see, calculation of the right-hand 
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side (1.1) “breaks up,” and the calculation time decreases by more than an order of 
magnitude. 

The next point of principle consist in the following: it was shown in Section 1 that 
the saturation time and existence itself of the stationary state are defined by the noise 
terms which disturb the Hamiltonian nature of (1.1). 

Therefore variation of the kernel Tkkj (the asymmetry properties remain) will result 
in the change of the amplitude of the stationary distributions E: only. 

For simplicity, we present the principle of the method and error evaluation for a 
one-dimensional case. 

2.1. Replacement of the Kernel 

Let us replace the kernel T,,, by a similar degenerated one, 

Tkkc = ,f a,(k) b,(k’). 
i=O 

(2.1) 

The Taylor series can be taken as (2.1), but it is suitable only in the vicinity of a 
chosen point. Our purpose is to approximate T,,, through the whole interval of 
definition, but not at the individual points. Therefore it is natural to replace the kernel 
by a finite number of n terms of an expansion into orthogonal polynomials. In our 
opinion, Tchebyshev polynomials should be preferred in this class: first, the error of 
expansion for them is uniform on the whole interval; second, and this is of particular 
importance in our case, the series in the Tchebyshev polynomials converges rapidly, 
and it can be broken when n are small [ 121. So, 

Fkkc = i a,(k) Ti(k’) 
i=O 

(2.2) 

(it is supposed that the interval over k has been already reduced to a unit interval 
(-1, 1)). Then 

rt’ = 
i 

Tkk,,skC dk’ 1: i ai Mi, 
i=O 

(2.3) 

where Mi = ( sk, T,(k’) dk’ are the moments .sk, in the Tchebyshev polynomials. At 
each time step t = jr the moments Mi of ck, (t = jr) should be calculated first, and 
then rfl with the help of (2.3). A criterion for the chaise of the n-number of the series 
terms in specific calculations can be as follows: the discrepancy of solution (1.1) 
should be calculated as n increases, and compared with the error of the difference 
time scheme. The numerical experiment has shown that for the schemes of the 
Crank-Nicholson type of the second order of accuracy and t 2: (1 t 5) x lo-* the 
corresponding n is of the order of 5 + 7. 
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2.2. Estimation of Error 
Let us rewrite Eq. (1.8) for the stationary distribution &ok as 

If the kernel K(x, v) is degenerate, i.e., 

K(X, Y)*KR(& Y>= 2 ai hi(Y) 
i=O 

solution (2.4) will be [ 131 

(2.4) 

(2.5) 

where 

bsj = I b,(y) ajO) he 

fij,,, is an algebraic cofactor of the element of the jth column and mth line of the 
matrix Mjm . Let the difference between the real kernel and the similar factorized 
kernel be of the order of 6 

through the whole interval over x. Rewrite (2.4) in the form 

j 2(x, y) fp( y) dy + j (qx9 Y> - &x9 VI) f-P(Y) 4J = f(x) 

(2.7) 
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With the help of (2.7) we obtain the estimation of CJ),,,~~ 

l3lG PI + 1 (&XT Y> -a-% Y>> V(Y) dY 

< IfI,,, + (Pmax j l&G Y) - K(x, Y)l dY 

G Iflmax + ellax~~ 
ISIm!, = “YP If(x ‘PIna, = Su,P V(X)* 

Note that (2.7) is again an equation with degenerated kernel, and its solution has the 
form (see (2.5)) 

This suggests that oma, GR,,, 131 < R,,xWI,,x + Vmax@~ 

R max = sup .i IR(x, YI @ (2.8) 

And, finally, omax ( lfimax R,,, for rather small 6 (R,,6 < 1). 
Now we write down Eq. (2.4) for difference of the solutions with exact and reduced 

kernels &I = (D - 6: 

I w Y) Rx, Y) dY = 3(x> - f(x). (2.9) 

Because of (2.5) solution (2.9) is 

&(x) = ( NT YH~CY) -J-(Y)] dye 

Let us estimate the solution 

Thus, the stationary solution error is proportional to the magnitude of kernel 
variation and can be infinitesimal. 

3. LANGMUIR WAVE SPECTRA IN THE PROBLEM OF 
PLASMA HEATING WITH A RELATIVISTIC BEAM 

The beam of relativistic electrons in plasma, where electron and ion temperatures 
are comparable, excites Langmuir oscillations located in the k-space near the surface 
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of resonance of plasma particles with the beam 

Wp=kVb. (3.1) 

The increment of beam instability yk is nonzero for k > w,,/vb and reaches its 
maximum, ymax, when k = q,/q,. 

The value yrnax N ~,(1/(~@)*)(v~/c*)~ h w ere A0 is a value angular velocity 
dispersion of the beam particles, q is a ratio of particle densities in a beam and 
plasma, and vb is a beam velocity [ 141. Characteristic time of variation of electron 
velocity distribution function f, is much more than characteristic time of nonlinear 
wave interaction. Therefore, at first we can solve a problem about Langmuir 
turbulence spectra resulting from the induced scattering on ions of Langmuir waves 
for the givenf,(v), and then take into account the inverse action of oscillations on the 
distribution function. 

Let us write (1.1) for a case of axial symmetry, which corresponds to a typical 
experiment, and consider the initial value problem for Eq. (1.1). We assume that at 
time I = 0 an electron beam enters plasma only with a small thermal noise. As the 
results of numerical experiment show, stationary wave distribution is practically 
independent of detailed structure of the initial distribution ek (t = 0), and for the sake 
of simplicity we can assume that .Q (t = 0) = f = const. 

Let us average Tkk,, i.e., a kernel of integral equation (l.l), with a Maxwell 
function of ion velocity distribution in the azimuth angle cp, after which it remains a 
function k, k’ and 0, 0’. It is convenient to change from the variable of angle 0 to 
x = cos 0. According to the procedure described in Sections 1 and 2 further we 
should factorize the kernel T(kk’,xx’) in k’,x’. A more detailed analysis shows, 
however, that in the problem considered the sk,@ wave distribution over the module k 
at fixed x = cos 0 is heavily cut up (see Fig. l), and a significant gain in the 
computation time can be attained for splitting in the variable x only. 

An implicit differential scheme of the second time order of the Crank-Nicholson 
type was applied to the factorized equation 

E i+ 1 _ Ei-l Ei+l + Ei-l 

25 = 2 b + ml, 

where r is a step of the time discretization .si = .skx (t = ir). For typical versions the 
number of points over module k was equal to 100 f 120, over angle 0 - 32. At first 
the oscillations increased near the surface (3.1), then there occurred nonlinear energy 
pumping from the area of excitation into nonresonance area k < o,,/vb because of the 
induced ion scattering. The numerical experiment has shown that with k < o,,/vb, the 
oscillations are concentrated in narrow areas, i.e., “jets,” 0 < 15’, rc - 0 < 15” (see 
Fig. l), the angle 0 is counted off the direction of beam propagation. The length of 
the jets is defined by the ratio of yma, to the attenuation of waves vci caused by 
electron collisions. The characteristic angular width of the jets increases with 
increasing angular dispersion A0 of the beam particles, but still it is much less than 

58 l/43/2-5 
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K 

FIG. I. The curves of constant value of the function In(e /E ) k tnaise 

7~12; i.e., the sk distributions are anisotropic, even when the source of oscillations 
differs slightly from an isotropic one. The structure of the jets over k is defined by the 
ratio of the excitation area (the size at which yk changes substantially) to the charac- 
teristic scale of wave interaction, i.e., to the kernel “width” Ak = k,i, = (w,/v,~) \/;;; 
and it can be strongly diverse (for more details see [4, 71). 

Here v,~ is thermal velocity of electrons, ,u is the ratio of electron mass to ion 
mass. 

Oscillations in the k > oP/ub area are concentrated on the two-dimensional 
“stream,” whose position coincides with the surface of maximum increment (3.1) to 
an accuracy of A@. The distribution of the oscillations along the stream looks like a 
plateau with sharp peaks spaces at the kdi, distance. 

The dynamics of arrangement of the stationary wave spectra has also proved to be 
rather uncommon. As the numerical experiment has shown the process of 
arrangement has two stages. At the first stage there occurs rough arrangement of the 
sk spectrum. The main characteristics of the system of waves, e.g., the total energy of 
oscillations E = ( ek &, are near the stationary values in this case. The duration of 
this stage is defined by the thermal noise level 

The second stage is much longer; according to estimation (1.6) which is confirmed 
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well by the numerical calculation 

=2 - r,:, 
&k max 

-----ST, 

‘k noise 

(for the typical plasma parameters r2 N (100 + 200) r;:, r1 - 10~;:~). The tine 
structure of the wave spectra arranges finally during this period. The computer time 
consumption for calculation of one version up to t - r2 according to the technique 
described is 1.5 + 2 hr using the computer BESM-6. 

The results of this problem solution (anisotropy of spectra, dynamics of the 
stationary distribution arrangement) allow a number of conclusions of principle about 
the mechanism of the beam-plasma interaction, in particular, the conclusion on the 
three-dimensional nature of relativistic electron beam relaxation, resulting in 
considerable broadening of the velocity distribution function of particles. It also 
allows calculation of the relaxation length, which is the main characteristic of plasma 
heating. 
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